(4)强化控轧控冷技术, 采用合适的开轧温度、吐丝温度及轧后冷却速度, 以获得理想的细索氏体组织。
对于斯太尔摩标准冷却模式——强制风冷来说, 其冷却速度不可能达到形成马氏体的临界转变温度。风冷速度越快, 奥氏体转变成索氏体越容易, 因此, 在实际冷却时采用大风量, 以求快速冷却, 一则可以控制铁素体的析出量, 二则可增大过冷度。对强度有特别要求的82B 盘条, 设定较高的吐丝温度, 加大冷却速度, 可以达到提高强度的效果。
控制冷却的主要目的是控制过冷度及冷却速度, 得到强韧化所需要的索氏体组织。根据金属热处理原理, 加快冷却速度, 可以使连续冷却曲线向右下方移动, 冷却速度越快,。
(2)连铸坯表面局部增碳,使盘条在拉拔时断裂, 产生笔尖状断口;
(3)优化原料, 采用炉外精炼措施, 减少钢水中的气体及杂质含量;
(3)盘条中的非金属夹杂物, 使盘条在拉拔和捻制变形时, 因应力作用而造成钢丝断裂;
控温轧制的主要目的是细化晶粒:通过低温开轧, 可以控制原始奥氏体晶粒的尺寸;通过降低终轧温度, 可以阻止形成奥氏体晶粒长大;通过对精轧后线材的急剧水冷, 达到所设定的吐丝温度, 不仅可以将形变奥氏体迅速转变成过冷奥氏体, 为组织转变作好充分准备, 同时也控制了过冷奥氏体晶粒尺寸。
由于高线盘条的轧制是在规定的孔型系统中完成的, 变形条件基本固定, 各道次的变形参数已确定, 在实际生产时主要是通过对轧制温度的控制即控温轧制来实现的。
(1)中心偏析是连铸小方坯代表性的缺陷, 解决的方法是增大连铸坯尺寸, 大于180mm ×180mm 为宜, 以提高轧制比;